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Initial response of a micro-polar hypoplastic material under plane
shearing
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Abstract. The behavior of an infinite strip of a micro-polar hypoplastic material located between two parallel
plates under plane shearing is investigated. The evolution equation of the stress tensor and the couple-stress tensor
is described using tensor-valued functions, which are nonlinear and positively homogeneous of first order in the
rate of deformation and the rate of curvature. For the initial response of the sheared layer an analytical solu-
tion is derived and discussed for different micro-polar boundary conditions at the bottom and top surfaces of
the layer. It is shown that polar quantities appear within the shear layer from the beginning of shearing with the
exception of zero couple stresses prescribed at the boundaries.
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1. Introduction

The objective of the present paper is to investigate the initial response of an infinite granular
layer located between two parallel plates under plane shearing using a continuum approach.
The grains of the dry and frictional material are assumed to be incompressible as usual in
the constitutive modeling of granular materials like sand or powder. Consequently, the vol-
ume change of the void space equals the volume change of the granular body and the gran-
ular body with empty voids can be modeled based on a single-component continuum. For
incompressible grains inelastic deformations of the granular body are caused by sliding and
rotating of particles against each other. The slide and rotation resistance is mainly determined
by the shape, size, and surface roughness of the particles, the packing density, the orientation
of the contact planes and the pressure level. Constitutive models based on a local or so-called
classical continuum fail to describe micro-polar properties of granular materials, which are
evident when shear deformation takes place. For instance, in a ring shear apparatus [1] the
displacement field across the height of a granular layer under shearing is nonlinear and
related to the micro-rotations of particles, which are different from the macro-rotations.
Under large monotonic shearing the deformation is located within a zone of a thickness
that is approximately 10–20 grain diameters [2–5]. In order to model such properties, an
expanded continuum theory which reflects certain changes in the micro-structure of the mate-
rial is needed. Non-local continuum models are characterized by internal length scales, addi-
tional kinematic degrees of freedom and/or higher order deformation gradients as outlined for
instance in [6,7], [8, pp. 4–24], [9–12]. In the present paper a micro-polar or so-called Cosserat
continuum within the framework of hypoplasticity is used, which allows relating the charac-
teristic length to the mean grain size in a physically natural manner.

Originally, the concept of hypoplasticity was developed based on a local or so-called classi-
cal continuum [13,14]. The term hypoplasticity was introduced by Dafalias [15] for a certain



36 E. Bauer

type of hardening plasticity and was subsequently adopted for a class of nonlinear constitu-
tive models of the rate type, which can be understood as a generalization of the theory of
hypoelasticity [16,17]. In the present paper the hypoplastic concept as proposed by Kolym-
bas [13] is considered, which differs fundamentally from the concept of elastoplasticity, as
no decomposition of the rate of deformation into reversible and irreversible parts is needed.
Inelastic material properties are modeled in hypoplasticity with inherently nonlinear isotropic
tensor-valued functions depending on the rate of deformation and the rate of curvature. For
instance, in the case of a non-polar hypoplastic material, the evolution of the stress tensor is
represented by the sum of a tensor function which is linear in the rate of deformation, and a
tensor function which is nonlinear in the rate of deformation. A flow rule and a stress limit
condition are not described by separate functions in hypoplasticity but instead are included
in the evolution equation for the state quantities. The advantage of the hypoplastic concept
lies not only in the formulation of the constitutive equation, but also in an easy adaptation
of the constitutive constants to experiments. Within the last two decades various hypoplastic
material models for frictional granular materials have been proposed, predominantly within
the framework of a classical continuum; see e.g. [13,14,18–21]. A comprehensive review of the
historical development, performance and limitation of hypoplastic models is given in [19,22–
24]. Extensions of the local hypoplastic model with quantities which are relevant for a micro-
polar continuum, i.e., rotational degrees of freedom in addition to translational degrees of
freedom, non-symmetric shear stresses, couple stresses and the mean grain diameter as the
internal length, are outlined in [25–31]. Both the non-polar hypoplastic model and the micro-
polar model were implemented into a finite-element program and applied to different practical
problems; see e.g. [32–35].

Analytical solutions are rare and can only be derived for certain boundary-value problems
using simplified versions of hypoplastic models as shown for a non-polar hypoplastic model
by Hill [36] and for a micro-polar hypoplastic model by Bauer and Huang [37], Hunag [38,
pp. 71–78]. The latter was the first analytical solution given for an infinite layer of a micro-
polar hypoplastic material at the onset of plane shearing. In the present paper this solution is
extended to the full set of state quantities involved, and is discussed for different micro-polar
boundary conditions. In contrast to earlier micro-polar hypoplastic versions by Tejchman and
Gudehus [30] and Huang et al. [31], a simplified micro-polar hypoplastic model is employed
for the present study, where the influence of the rate of deformation and rate of curvature is
decoupled. In particular, the evolution equation for the non-symmetric stress tensor and the
couple-stress tensor is described by tensor-valued functions which are nonlinear and homo-
geneous of first order only in the rate of deformation and the rate of curvature, respectively.
Compared to earlier versions, an additional constitutive constant is included in the present
model to refine the calibration of the volume-strain behavior.

The paper is organized as follows: In Section 2 the concept of hypoplasticity is briefly out-
lined for a non-polar continuum. Section 3 describes the extension to a micro-polar hypoplas-
tic continuum which is used in Section 4 to model the plane shearing of an infinite granular
layer under a constant vertical pressure. In Section 5 an analytical solution is derived for the
initial response of the sheared layer and discussed for different micro-polar boundary condi-
tions. Concluding remarks are presented in Section 6.

2. The concept of hypoplasticity

In the following the mechanical behavior of dry and cohesionless granular materials with
simple grain skeletons [27] is considered under quasi-static and isothermal conditions. The
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void-space between the grain skeleton is assumed to be empty and continuously connected.
The ratio of the volume of the voids to the volume of solid particles is called the void ratio
e, which is related to the bulk density ρ of the granular material as:

e= ρs

ρ
−1, (2.1)

where ρs denotes the mass density of the solid grains. If the change of ρs under load can be
neglected, the volume change of the granular material is determined by the volume change
of the void space. With Equation (2.1) and ρs = constant the balance relation of mass, i.e.,
ρ̇+ρ div ẋ =0 , can be rewritten as:

ė= (1+ e)div ẋ, (2.2)

where ẋ denotes the mean field velocity of the grain assembly. It follows from relation (2.2)
that the void ratio e is not an independent process variable, and that for an empty void space
with ρs = constant a granular body can be treated as a single-component continuum.

Within the framework of a classical hypoplastic continuum, the evolution of a stress state
is described by an isotropic tensor-valued function H depending in the simplest case on the
current Cauchy stress T and the symmetric part of the velocity gradient or so-called rate of
deformation D, i.e., T̊ = H(T, D) . In order to specify the function H, several requirements
must be fulfilled which are based on basic continuum mechanics and on the general mechan-
ical behavior of granular materials detected in experiments. For a rate-independent material
behavior the function H must be positively homogeneous of first order in D, i.e., H(T, λD)=
λH(T, D) holds for any scalar λ>0. In order to describe an inelastic behavior, the function
H must be a nonlinear function of D , i.e., H(T, D) �=−H(T, −D). In hypoplasticity both the
homogeneity of the first order in D and the nonlinearity in D are satisfied by a decomposition
of the tensor function H(T, D) into the sum of the following two parts [13]:

H(T, D)=L(T) : D+�(T)‖D‖ . (2.3)

Herein the tensor function L(T) : D is linear in D, and the tensor function �(T)‖D‖ is non-
linear in D with respect to the Euclidean norm of D, i.e. ‖D‖=√

D : D . It is easy to prove
that, with the basic concept of hypoplasticity in the form of the constitutive equation (2.3),
inelastic material properties are modeled. For two particular strain rates Da and Db with the
same norm, i.e., ‖Da‖ = ‖Db‖, but opposite principal directions, i.e., Db = −Da , the corre-
sponding responses of Equation (2.3) are H(T, Da) �= −H(T, Db). Therefore an inherently
inelastic material behavior is described with a single constitutive equation and there is no need
to decompose the deformation into elastic and plastic parts. Limit states are also included
in the constitutive equation (2.3) for particular T and D fulfilling the condition: L(T) :
D + �(T)‖D‖ = 0; see e.g. [13,39]. For a refined modeling of the mechanical properties of
granular materials the tensor functions L and � in (2.3) may also depend on additional
scalar- and tensor-valued state variables. For instance, the influence of pressure and on the
incremental stiffness can be taken into account by scaling L and � with a pressure-depen-
dent stiffness factor and densityfactor [19,20,40,41]; rate-dependent properties can be intro-
duced in the nonlinear part of the constitutive relation [42,43], and with additional structure
tensors initial anisotropy [44,45], cohesion [46] and a so-called inter-granular strain [47] can
be modeled. In order to also take into account particle rotation and couple stresses the non-
polar constitutive relation (2.3) was extended to a micro-polar continuum [28,30,31], which is
discussed in more detail in the next section.
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3. Micro-polar hypoplastic model

In a micro-polar continuum, e.g. [8], the kinematics are characterized by the velocity vector
ẋ and the micro-spin vector or so-called Cosserat spin vector ω̇c . The micro-spin tensor Wc ,
the rate of deformation Dc and the rate of curvature K are defined as:

Wc=−ε ω̇c , Dc=L−Wc , K =grad ω̇c . (3.1)

Herein the third-order tensor ε denotes the permutation tensor. The velocity gradient L =
grad ẋ in (3.1) is related to the macro-motion and can be decomposed into the symmetric
part D = (L + LT )/2 and the skew-symmetric part W = (L − LT )/2 . The definition of tensor
D is the same as for the rate of deformation in a non-polar continuum. The macro-spin ten-
sor W can also be represented by the rate of the macro-spin vector ω̇ , i.e., W=−ε ω̇ . Hence
definition (3.1) for the rate of deformation can alternatively be written as

Dc=D+W −Wc. (3.2)

Representation (3.2) indicates that, in the case where the macro-spin is equal to the micro-
spin, i.e., ω̇ = ω̇c , the rate of deformation Dc reduces to the tensor D of the classical non-
polar continuum. The kinematic quantities Dc and K are associated with the stress tensor
T and the couple-stress tensor M defined for the current configuration. For quasi-static pro-
cesses the local-equilibrium equations read:

divT+ρ b̃ =0, (3.3)

divM − ε : T+ρ m̃ =0. (3.4)

Herein ρ denotes the bulk density of the material, b̃ and m̃ represent the body force and
body couple, respectively. Equation (3.4) indicates that the stress tensor in a micro-polar con-
tinuum is usually non-symmetric with the exception of states with divM = 0 and m̃ = 0 . In
order to have objective measures for the stress rate and couple-stress rate, the time derivative
given by Green and Naghdi [48] is adopted, i.e.,

T̊= Ṫ−�T+T �, (3.5)

M̊ =Ṁ −�M +M �. (3.6)

Herein the angular velocity tensor � is related to the rotation tensor R and to the rate of
rotation tensor, Ṙ, as � = Ṙ RT . In the present paper the following evolution equations for
the stress tensor and couple-stress tensor are considered:

T̊=fc trT
[
â2 (Dc+ c

3
(I : Dc ) I )+ (T̂ : Dc) T̂+ â (T̂+ T̂∗)‖Dc‖

]
, (3.7)

M̊ =d50 fc trT
[
a2
mK̄ + (M̂ : K̄)M̂ +2am M̂ ‖K̄‖

]
. (3.8)

Herein T̂ = T/trT, T̂∗ = T̂ − I/3 , M̂ = M/(d50trT) , K̄ = d50K are normalized quantities
with trT = I : T and fc, â, c, am and d50 are scalar factors. The mean grain diameter d50

enters the constitutive equations as the internal length. In contrast to earlier micro-polar
hypoplastic models a certain simplification is assumed in the present constitutive relations
(3.7) and (3.8). In particular, the non-symmetric stress rate is homogeneous of first order in
the rate of deformation only and the couple-stress rate is homogeneous of first order in the
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rate of curvature only, which is not assumed in the more sophisticated micro-polar hypoplastic
models discussed for instance by Tejchman and Gudehus [30], Huang et al. [31]. As outlined
by Bauer [20] and Gudehus [19], factor fc with the dimension of stress is usually related to
the pressure and density-dependent stiffness under isotropic compression. Here a specific rep-
resentation of fc will not be discussed in more detail as it is not relevant to the investigations
outlined in Section 5. While in earlier hypoplastic versions the transverse-strain sensitivity of
the material was a pure prediction of the constitutive model, a new constant c allows a scal-
ing of the influence of the volume strain rate I : Dc , which is included as an additional term
in the constitutive equation (3.7). It can be concluded from Equation (3.7) that the constant c
has no influence for isochoric deformations. In particular for critical states, which are defined
for monotonic isochoric deformations without changes of the stress and couple stress state,
i.e., I : Dc = 0 , T̊ = 0 and M̊ = 0 , the constitutive relations (3.7) and Equation (3.8) yield:
‖T̂∗‖= â and ‖M̂‖=am . Thus, the factor â is related to the stress limit condition, and factor
am is related to the couple-stress limit condition in critical states. Factors â and am reflect the
intergranular slide resistance and rotation resistance of particles, respectively [49]. However,
for stress states which deviate from critical states, the quantity â is not only related to ‖T̂∗‖
because the requirement â > 0 must be also fulfilled for isotropic stress states. A consistent
adaptation of â to the stress limit condition by Matsuoka and Nakai [50] was, for instance,
shown by Bauer [51] for a non-polar continuum, which yields for critical states under plane
strain conditions:

â=
√

8 sin2 ϕc

9 (3+ sin2 ϕc)
,

and for isotropic stress states:

â=
√

8
3

(
sinϕc

3− sinϕc

)
,

Herein ϕc denotes the intergranular friction angle defined for the critical state under triaxial
compression. In contrast to a non-polar continuum the stress tensor in a micro-polar contin-
uum is usually non-symmetric, which may lead to a different representation of â [37]. For
the sake of simplicity â and am are assumed to be constant in the present paper.

Based on the simplified micro-polar hypoplastic model, an analytical solution for the ini-
tial response of plane shearing can be derived for the full set of state quantities involved as
outlined in Section 5. In this context it can be noted that the solution for the macro- and
micro-spins, the rate of shear stresses and rate of the couple stresses is the same for the sim-
plified micro-polar hypoplastic model and the models proposed by Tejchman and Gudehus
[30], Huang et al. [31]. However, a different response is obtained for the rate of the normal
stresses and the volume strain rate. The analytical solution is restricted to the initial response
at the beginning of shearing. For larger shearing the underlying set of differential equations
can only be solved numerically and the results are no longer the same for different models.

4. Modeling of plane shearing with dilatancy

For plane shearing of an infinite layer the field quantities are independent of the co-ordinate
in the direction of shearing, i.e., ∂(.)/∂x1 =0 with respect to the co-ordinate system shown in
Figure 1. For plane-strain conditions the field quantities are also independent of the co-ordi-
nate x3. Then the macro-motion can be described by x1 =X1 +f1(X2, t) , x2 =X2 +f2(X2, t)

and x3 =X3 , where the spatial co-ordinates xi (i=1,2,3) represent the current position of a
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(a) (b) (c)

Figure 1. Modeling of plane shearing under constant vertical pressure p0 = −σ22: (a) section of the infinite granu-
lar layer between parallel plates with rough surfaces, (b) kinematics of plane shearing with dilatancy and degrees of
freedom u1, u2 and ω3, (c) stress components σ11, σ22, σ33, σ12, σ21 and couple-stress components M31 and M32

with respect to the Cartesian co-ordinate system.

particle and Xi (i=1,2,3) are the corresponding co-ordinates in the initial configuration. The
functions fi(X2, t) (i= 1,2) are time-dependent functions with respect to fi(X2, t = 0)= 0 in
the initial configuration at time t=0 . The only possible micro-motion is the micro-rotation or
so-called Cosserat rotation ωc3 which is orientated perpendicular to the (x1, x2) plane as shown
in Figure 1. The displacements ui = xi −Xi read: u1 =f1(X2, t) , u2 =f2(X2, t) and u3 = 0 .
Since u2 depends on X2, the kinematics of shearing with dilatancy is taken into account. With
respect to

gi(X2, t)= ∂fi(X2, t)

∂X2
and ġi (X2, t)= d gi(X2, t)

d t
(i=1,2), (4.1)

for any field variable φ defined in the infinite layer, the following relations are valid:

∂φ

∂X1
= ∂φ

∂x1
=0,

∂φ

∂X2
= (1+g2)

∂φ

∂x2
,

∂φ

∂X3
= ∂φ

∂x3
=0. (4.2)

Therefore the non-vanishing components of the velocity gradient and macro-spin read:

L12 = ∂u̇1

∂x2
= ġ1

1+g2
, L22 = ∂u̇2

∂x2
= ġ2

1+g2
, W12 = 1

2
∂u̇1

∂x2
=−ω̇3. (4.3)

It follows from L22 in (4.3) that ġ2/(1 +g2) is equal to the volume strain rate and therefore
a measure of the dilatancy behavior of the granular layer. As body forces, body couples and
inertia forces are neglected, the equilibrium equations (3.3) and (3.4) reduce to:

∂Tij

∂xj
=0,

∂Mij

∂xj
− εikl Tkl =0. (4.4)

With respect to the relations in (4.2) the time derivative of Equations (4.4) reads:

∂Ṫij

∂xj
− ∂Tij

∂xm

∂u̇m

∂xj
=0, (4.5)

and

∂Ṁij

∂xj
− ∂Mij

∂xm

∂u̇m

∂xj
− εikl Ṫkl =0. (4.6)



Initial response of a micro-polar hypoplastic material 41

For the infinite sheared layer Equations (4.5) and (4.6) yield:

∂Ṫ12

∂x2
=0,

∂Ṫ22

∂x2
=0, (4.7)

∂Ṁ32

∂x2
− ġ2

1+g2
(T12 −T21)− (Ṫ12 − Ṫ21)=0. (4.8)

The material derivatives Ṫij and Ṁij in (4.7) and (4.8) are related to the constitutive equations
using the corresponding objective derivatives defined in (3.5) and (3.6). For plane shearing the
components of the objective stress rate and couple stress rate read:

T̊11 =fc
[
â2 (c/3)Dc22 +ψ1 T̂11 + â (2 T̂11 −1/3)

√
ψ2

]
,

T̊22 =fc
[
â2 (Dc22 + (c/3)Dc22)+ψ1 T̂22 + â (2 T̂22 −1/3)

√
ψ2

]
,

T̊33 =fc
[
â2 (c/3)Dc22 +ψ1 T̂33 + â (2 T̂33 −1/3)

√
ψ2

]
,

T̊12 =fc
[
â2Dc12 + (

ψ1 +2 â
√
ψ2

)
T̂12

]
, (4.9)

T̊21 =fc
[
â2Dc21 + (

ψ1 +2 â
√
ψ2

)
T̂21

]
,

M̊31 =d50 fc

[(
M̂32 K̄32 +2am

√
K̄2

32

)
M̂31

]
,

M̊32 =d50 fc

[
a2
m K̄32 +

(
M̂32 K̄32 +2am

√
K̄2

32

)
M̂32

]
,

with the abbreviations.

ψ1 = T̂12D
c
12 + T̂21D

c
21 + T̂22D

c
22, ψ2 =Dc 2

12 +Dc 2
21 +Dc 2

22 ,

and the kinematic quantities

Dc12 = ω̇c3 + ġ1

1+g2
, Dc21 =−ω̇c3 , Dc22 = ġ2

1+g2
, K̄32 =d50

∂ω̇c3

∂x2
.

While the symmetry condition for the infinite shear layer was already considered above, the
boundary conditions at the bottom and top of the layer are still to be specified. Apart from
the displacement and stress boundary conditions of the classical continuum, micro-rotation
and couple-stress boundary conditions occur in a micro-polar continuum. Herein the micro-
polar boundary conditions allow the modeling of the influence of the rotation resistance of
particles in contact with a rough bounding structure, as has been discussed in more detail,
for instance by Tejchman [28] and Bauer and Huang [34]. For the present investigation the
bottom of the layer is assumed to be fixed so that neither sliding nor rotation may occur,
i.e.,

x2 =0 : u̇1 =0, u̇2 =0, ω̇c3 =0. (4.10)
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At the top of the layer a vertical pressure is applied and kept constant, i.e., Ṫ22 =0. The hor-
izontal velocity u̇1T and the rate of the micro-rotation ω̇c3T are prescribed, i.e.,

x2 =h : u̇1 = u̇1T , ω̇c3 = ω̇c3T , Ṫ22 =0 . (4.11)

5. Analytical solution for the initial response

For the investigation of the initial response of an infinite sheared layer the following homo-
geneous and initially isotropic state is considered:

Tij =−p0 δij , Mij =0, (5.1)

where p0 denotes the isotropic initial pressure. It follows from the relations in (5.1) that in
the initial state the shear stresses and couple stresses are assumed to be zero; thus, the mate-
rial time derivatives of the stresses and the couple stresses coincide with the objective rates
at the beginning of shearing. When this property is taken into account and with respect to
g1 = g2 = 0 and the initial state assumed in (5.1), the relations for the non-zero rate of the
stress and couple-stress components by (4.9) reduce to:

Ṫ11 = T̊11 =fc
[
â2 c

3
ġ2 + ġ2

9
+ â

3

√
ġ2

2 + (ω̇c3 + ġ1)
2 + ω̇c 2

3

]
, (5.2)

Ṫ22 = T̊22 =fc
[
â2

(
1+ c

3

)
ġ2 + ġ2

9
+ â

3

√
ġ2

2 + (ω̇c3 + ġ1)
2 + ω̇c 2

3

]
, (5.3)

Ṫ33 = T̊33 = Ṫ11, (5.4)

Ṫ12 = T̊12 =fc â2 (ω̇c3 + ġ1), (5.5)

Ṫ21 = T̊21 =−fc â2 ω̇c3, (5.6)

Ṁ32 = M̊32 =fc a2
m d

2
50K32. (5.7)

Herein the quantities:

ġ1 = du̇1

dx2
=−2 ω̇3, ġ2 = du̇2

dx2
, ω̇c3 and K32 = dω̇c3

dx2
(5.8)

have to be determined for the given boundary value problem as outlined in the following
section.

5.1. General solution

With respect to the requirement in (4.7) the quantity Ṫ12 in (5.5) is constant across the height
of the layer, i.e.,

Ṫ12 =fc â2 (ω̇c3 + ġ1)=χ, (5.9)

where χ denotes a constant. By substituting the relations (5.5–5.7) in (4.8), one obtains

∂

∂x2

(
fc a

2
m d

2
50
∂ω̇c3

∂x2

)
−fc â2 (2 ω̇c3 + ġ1)=0. (5.10)
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For an initially homogeneous layer, fc, â and d50 are independent of the co-ordinates xi (i=
1,2,3) so that (5.10) and (5.9) lead to the following differential equation for ω̇c3

η2 d2ω̇c3

dx2
2

− ω̇c3 =C1, (5.11)

with the abbreviations

η= am

â
d50 and C1 = χ

fc â2
= ω̇c3 + ġ1.

The general solution to the second-order differential equation (5.11) reads

ω̇c3 =C2 cosh(x2/η)+C3 sinh(x2/η)−C1, (5.12)

where C2 and C3 are integration constants. The derivative of ω̇c3 yields the rate of curvature,
i.e..,

K32 = dω̇c3
dx2

= 1
η

[C2 sinh(x2/η)+C3 cosh(x2/η) ] . (5.13)

Inserting ġ1 =−2 ω̇3 in (5.9), one obtains for the rate of the macro-spin

ω̇3 = 1
2

[
ω̇c3 −C1

]= 1
2

[C2 cosh(x2/η)+C3 sinh(x2/η) ]−C1, (5.14)

and for the quantity ġ1

ġ1 =−2 ω̇3 =2C1 − [C2 cosh(x2/η)+C3 sinh(x2/η) ] . (5.15)

With respect to (5.8) the integration of du̇1 =−2 ω̇3 dx2 yields the initial rate of the horizon-
tal displacement u1 as a function of the co-ordinate x2, i.e.,

u̇1 =2C1 x2 −C2 η sinh(x2/η)−C3 η cosh(x2/η)+C4. (5.16)

Taking into account a constant vertical pressure applied at the top of the layer, and the
requirement for equilibrium across the height of the layer, one observes that Ṫ22 is zero within
the shear layer. Inserting Ṫ22 =0 and ω̇c3 from (5.12) in (5.3) yields an equation for ġ2 with
the solution

ġ2 =−
√
C2

1 + [C2 cosh(x2/η)+C3 sinh(x2/η)−C1]2

[ â(3+ c)+1/(3 â) ]2 −1
. (5.17)

The initial rate of the vertical displacement u2 can be obtained by integration of du̇2 = ġ2 dx2, i.e.,

u̇2 =−
∫ √

C2
1 + [C2 cosh(x2/η)+C3 sinh(x2/η)−C1]2

[ â(3+ c)+1/(3 â) ]2 −1
dx2 +C5. (5.18)



44 E. Bauer

By inserting ω̇c3, K32, ġ1 and ġ2 into (5.2) to (5.7), one obtains the following relations for the
initial rate of the normalized quantities of the stress and couple stress components

Ṫ11

fc â2
=

[
c

3
− 1

9 â2

][
C2

1 + [C2 cosh(x2/η)+C3 sinh(x2/η)−C1]2

[ â(3+ c)+1/(3 â) ]2 −1

]
+

+ 1
3 â

[
C2

1 + [C2 cosh(x2/η)+C3 sinh(x2/η)−C1]2

1−1/[ â(3+ c)+1/(3 â) ]2

]1/2

, (5.19)

Ṫ33

fc â2
= Ṫ11

fc â2
,

Ṫ12

fc â2
=C1, (5.20)

Ṫ21

fc â2
=−C2 cosh(x2/η)−C3 sinh(x2/η)+C1, (5.21)

Ṁ32

fc â am d50
=C2 sinh(x2/η)+C3 cosh(x2/η) (5.22)

with η= (am/â)d50 . The general solution shows that, even for the case of an initially isotro-
pic stress state and zero couple stresses, the initial rate of the state quantities under shearing
is different from the classical non-polar continuum in the case of non-vanishing constants C2

and C3. With the exception of Ṫ12 the rates of the state quantities are nonlinear functions of
the co-ordinate x2 as a result of the micro-polar quantities contained in the present micro-
polar hypoplastic model. Furthermore, it follows from relation (5.17) that a transverse-strain
sensitivity, which is controlled by the constitutive constant c, influences the volume strain rate
I : Dc= ġ2, and consequently also the velocity u̇2 and the stress rates Ṫ11 and Ṫ33. It can also
be noted that, for real solutions for ġ2, the denominator of the expression (5.17) must be
greater than zero, which yields a lower bound for the calibration of the value of c.

Across the height of the sheared layer the distribution of the quantities (5.12) to (5.22)
is strongly influenced by the interface behavior between the granular layer and the rough
bounding plates. The interface behavior can be taken into account by specifying the constants
Ci (i=1·5) as outlined in the next section.

5.2. Influence of the micro-polar boundary conditions

The boundary conditions at the bottom and top surfaces specified in (4.10) and (4.11) yield
for the constants Ci (i=1·5):

C1 = u̇1T /η+ ω̇c3T tanh(h/(2η))

2 [h/η− tanh(h/(2η))]
, C2 =C1, (5.23)

C3 = ω̇c3T [(2h/η)/ sinh(h/η)−1]− (u̇1T /η) tanh(h/(2η))

2 [h/η− tanh(h/(2η))]
, (5.24)

C4 =ηC3 , C5 =
[∫

ġ2 dx2

]

x2=0
, with: η= am

â
d50. (5.25)

In the following the influence of the micro-polar boundary conditions on the initial response
will be discussed for a shear layer with a height of h= 1 cm, a prescribed horizontal shear
velocity of u̇1T = 1 cm/s , a constant vertical pressure and the constitutive constants: d50 =
0·05 cm, â=0·33, am=1 and c=0 which are relevant for a medium quartz sand with a crit-
ical friction angle of ϕc=30◦. For the present discussion the value of the constant fc is not
relevant as the rates of the stress- and couple stress components can be normalized by fc .
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Initial response of a sheared layer for the boundary conditions at the bottom x2 =0 : u̇1 = u̇2 =0, ω̇c3B =0,
and at the top x2 =h : u̇1 = u̇1T , Ṫ22 =0, ω̇c3T =0 (solid curve) and Ṁ32T =0 (dotted curve). Distribution of: (a) hor-
izontal velocity u̇1, (b) vertical velocity u̇2, (c) micro-rotation rate ω̇c3, (d) macro-rotation rate ω̇3, (e) difference
of macro- and micro-rotation rates ω̇3 − ω̇c3, and (f) curvature rate K32 .

Figures (2) and (3) show the initial response of the shear layer for two different micro-polar
boundary conditions prescribed at the top surface. The solid curves show the results obtained
for ω̇c3(x2 =h)= ω̇c3T =0 and the dotted curves are obtained for the assumption of a zero cou-
ple stress rate Ṁ32(x2 =h)= Ṁ32T =0.

The special case ω̇c3T = 0 reflects the behavior of a very rough top surface without par-
ticle rotation along the interfaces. The same assumption was introduced in (4.10) for the
bottom surface, so that the micro-polar boundary conditions are symmetric for this case.
Figure 2a and 2b shows that the velocities u̇1(x2) and u̇2(x2) are nonlinearly distributed
across the height of the shear layer. Thus, in a micro-polar continuum the deformation is
inhomogeneous from the beginning of shearing. The distribution of the rate of micro-rotation
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(a) (b)

(c) (d)

Figure 3. Initial response of a sheared layer for the boundary conditions at the bottom x2 =0 : u̇1 = u̇2 =0, ω̇c3B =0,
and at the top x2 =h : u̇1 = u̇1T , Ṫ22 =0, ω̇c3T =0 (solid curve) and Ṁ32T =0 (dotted curve). Distribution of the nor-
malized: (a) shear stress rate Ṫ12, (b) shear-stress rate Ṫ21, (c) normal-stress rate Ṫ11 = Ṫ33, and (d) couple-stress
rate Ṁ32 .

(Figure 2c) and the rate of macro-rotation (Figure 2d) are also nonlinear and they are differ-
ent from each other (Figure 2e). With respect to the rule of signs in Figure 1a negative micro-
rotation rate means clockwise rotation for a movement of the top surface to the right. The
extreme values of ω̇c3 and of ω̇3 occur in the middle of the layer. The gradient of the micro-
rotation is termed rate of curvature, K32 , and shown in Figure 2f. From Figure 2e it can be
concluded that, at the beginning of shearing, the influence of micro-polar properties is more
pronounced close to the bottom and top boundaries of the layer. The shear-stress rate Ṫ12 is
constant as is necessary for equilibrium (Figure 3a) and it is different from the shear stress
rate Ṫ21 (Figure 3b). Therefore, the stress tensor also becomes non-symmetric in the case of
an initially isotropic stress state. The distribution of the normal stress rate Ṫ11 is nonlinear
(Figure 3c) and it is equal to the normal stress rate Ṫ33. The normalized quantity of the
couple-stress rate Ṁ32 (Figure 3d) coincides with the normalized curvature rate K32 shown
in Figure 2f which is due to relation (5.7). Although the couple-stress rate is zero in the
middle of the layer for symmetric micro-polar boundary conditions, i.e., Ṁ32(x2 = h/2)= 0,
the shear stress rate Ṫ12(x2 =h/2) is different from the shear-stress rate Ṫ21(x2 =h/2). Thus,
∂Ṁ32/∂x2 �=0 holds for x2 =h/2 and depends on the height h of the shear layer according to

[
∂Ṁ32

∂x2

]

x2=h/2
= fc â

2 u̇1/(h/η)

2 [(h/η) cosh(h/(2η))− sinh(h/(2η))]
. (5.26)

The results indicate that micro-polar effects appear across the entire height of the shear
layer and a localization of the deformation is not manifested at the beginning of shearing.
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Figure 4. Distribution of initial rate of the micro-polar rotation, ω̇c3, for the boundary conditions at the bottom
x2 = 0 : u̇1 = u̇2 = 0, ω̇c3B = 0, and at the top x2 = h : u̇1 = u̇1T , Ṫ22 = 0 , m= 0 (solid curve), m=m0 (dotted curve)
and m>m0 (chain-dotted curve).

Numerical simulations of large shearing show that shear localization takes place with
advanced shearing in the area of the maximum magnitude of the rate of the micro-rotations;
see e.g. [38, pp. 79–85], [30,49,52]. Thus, the extreme value of the rate of micro-rotations
obtained for the initial response (Figure 2c) is an indicator of where shear-strain localization
may develop under continuous shearing.

Another case of interest arises for a zero couple-stress rate along the top surface. The
boundary condition Ṁ32(x2 =h)=Ṁ32T =0 can alternatively be expressed by the correspond-
ing micro-rotation:

ω̇c3(x2 =h) = ω̇c3T = −m0
u̇1T

η
, (5.27)

with:

m0 = 1−1/ cosh(h/η)
2 [h/η− tanh(h/η) ]

, η= am

â
d50.

Together with ω̇c3B =0 prescribed at the bottom of the layer the micro-polar boundary condi-
tions are no longer symmetric. By inserting relation (5.27) for ω̇c3T in (5.23–5.25), one obtains
the initial response of the shear layer for the boundary conditions ω̇c3B = 0 and Ṁ32T = 0
(dotted curves in Figure 2 and Figure 3). At the beginning of shearing the distribution of the
velocities u̇1(x2) (Figure 2a) and u̇2(x2) (Figure 2b) is again nonlinear and almost the same
as for the case of ω̇c3T = 0. The further evolution of these quantities, however, can be quite
different when shear localization appears under larger shearing, as can be shown by numeri-
cal simulations; see e.g. [49]. In contrast with the results obtained for the boundary condition
ω̇c3T = 0, the extreme value of the micro-rotation (Figure 2c) and macro-rotation (Figure 2d)
occurs at the top of layer. Both dω̇3/dx2 and dω̇c3/dx2 are zero at the top of the layer, which
underlines the meaning of Ṁ32T =0 as a special boundary condition, where the curvature rate
K32 =dω̇c3/dx2 changes sign (Figure 4). The normalized quantity of the couple-stress rate Ṁ32

(Figure 3d) again coincides with the curvature rate K32 and the initial shear-stress rate Ṫ12

(Figure 3a) is a little lower than for the symmetric boundary conditions, ω̇c3B = ω̇c3T = 0. In
contrast with the results obtained for symmetric boundary conditions, the maximum shear
stress rate Ṫ21 (Figure 3b) and the maximum normal-stress rates Ṫ11 = Ṫ33 (Figure 3c) occur
at the top of the layer when a zero couple-stress rate is prescribed.
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It follows from relation (5.27) that, for Ṁ32T =0, the micro-rotation rate ω̇c3T along the top
boundary is proportional to the prescribed horizontal shear displacement u̇1T . The evolution
of the state quantities are also determined by the height of the shear layer because the factor
m0 depends on h. By replacing m0 with an arbitrary factor m relation (5.27) agrees with the
empirical formula proposed by Tejchman [28] to model the influence of a rough bounding sur-
face on the rotation resistance of particle in contact with the bounding structure. Numerical
simulations by Huang et al. [52] show that the location and thickness of shear-strain localiza-
tion is strongly influenced by the value of the factor m. In particular for m=0 the case of a
very rough top surface without particle rotations is modeled which shows an extreme value of
micro-rotations in the middle of the shear layer. For 0<m<m0 the extreme value of micro-
rotations and consequently the location where shear-strain localization takes place is located
within the upper part of the shear layer. For m>m0 shear-strain localization takes place very
close to the top boundary and the thickness of the localized zone is smaller than for m<m0 .
The influence of m on the initial response of the micro-rotations is demonstrated in Figure
4 for different values for m. It is obvious that m determines the sign of the curvature rate
K32 =dω̇c3/dx2 and the location of maximum micro-rotation. At the top of the layer the cur-
vature rate is positive for m<m0 , negative for m>m0 and zero for m=m0 . The latter is
related to Ṁ32T =0.

For prescribed zero couple-stress rates along the bottom and top surfaces the response
of the shear layer coincides with the results obtained for the classical non-polar contin-
uum. In particular the constants C2 and C3 become zero by inserting the boundary con-
ditions Ṁ32(x2 = 0)= Ṁ32(x2 = h)= 0 in relation (5.22). Consequently relation (5.16) yields
C4 = 0 for the bottom boundary condition u̇1(x2 = 0) = 0 , and with respect to the pre-
scribed horizontal shear velocity u̇1(x2 = h) = u̇1T at the top of the layer one obtains
C1 = u̇1T /(2h). For the bottom boundary condition u̇2(x2 =0)=0 relation (5.18) yields C5 =0.
Then the couple stresses are zero, the micro-rotation rate corresponds to the macro-rotation
rate, the shear stresses are symmetric and the velocity profile is linear across the height of the
layer, i.e.,

ω̇c3 = ω̇3 =− u̇1T /(2h) , K32 =0, (5.28)

ġ1 = u̇1T /h , u̇1 = (u̇1T /h) x2, (5.29)

ġ2 =−
√

2 [u̇1T /(2h)]2/[[ â(3+ c)+1/(3 â) ]2 −1], (5.30)

u̇2 =−
√

2 [u̇1T /(2h)]2/[[ â(3+ c)+1/(3 â) ]2 −1]x2, (5.31)

Ṫ11 = Ṫ33 =fc
√

2 â2/[[ â(3+ c)+1/(3 â) ]2 −1] u̇1T /(2h), (5.32)

Ṫ12 = Ṫ21 =fc â2 u̇1T /(2h) , Ṁ32 =0. (5.33)

It follows from (5.28) to (5.33) that for the couple-stress boundary conditions Ṁ32(x2 = 0)=
Ṁ32(x2 = h)= 0 no polar properties appear within the shear layer. Numerical simulations
show, however, that for continued shearing the non-polar solution is unstable. Any pertur-
bation immediately leads to the polar solution. This phenomenon was termed “spontaneous
polarisation” by Gudehus [53].
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6. Conclusion

The influence of particle rotation and couple stresses in granular materials has been mod-
eled with a micro-polar hypoplastic continuum approach. The evolution equations for the
non-symmetric stress tensor and the couple-stress tensor are nonlinear isotropic tensor-val-
ued functions, which are homogeneous of first order in the rate of deformation and rate of
curvature. For an infinite strip of a micro-polar hypoplastic material located between two
parallel plates under plane shearing an analytical solution has been derived. The general solu-
tion shows that polar quantities appear within the shear layer from the beginning of shearing.
In contrast with the classical non-polar continuum the shear velocity and dilatancy veloc-
ity are nonlinearly distributed across the height of the shear layer, even if the material is
homogeneous and non-polarized in the initial state. The macro-rotation rate is not constant
and differs from the micro-rotation rate. Shear stresses are non-symmetric and the stress and
couple-stress rates are distributed nonlinearly. The distribution of the state quantities within
the shear layer strongly depends on the prescribed micro-polar boundary conditions which
reflect the rotation resistance of the particles against the surface of the bounding structure.
This is demonstrated for two different wall boundary conditions at the top of the shear layer.
For the interaction with a very rough wall particle rotations are prevented, which can be mod-
eled with locked micro-rotations along this boundary. Then the corresponding couple-stress
rate shows an extreme value at this boundary. The results for the rate of the state quantities
obtained for zero couple-stress rates prescribed along one of the boundaries show a non-sym-
metric distribution within the shear layer. The same result as for the non-polar continuum is
obtained for the special case of zero couple-stress rates prescribed at both the bottom and the
top boundaries. For an initially homogeneous and isotropic state, an analytical solution for
the present micro-polar hypoplastic material model under plane shearing is restricted to the
initial response. In general, the underlying set of differential equations for continuous shear-
ing can only be solved numerically.
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